/*
कर्मण्येवाधिकारस्ते मा फलेषु कदाचन ।
मा कर्मफलहेतुर्भुर्मा ते संगोऽस्त्वकर्मणि ॥
अर्थ:- तेरा कर्म करने में अधिकार है इनके फलो में नही. तू कर्म के फल प्रति असक्त न हो या कर्म न करने के प्रति प्रेरित न हो.
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <climits>
using namespace std;
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update>
new_data_set;
#define MOD 1000000007
#define MOD1 998244353
constexpr int inf = numeric_limits<int>::max() / 2;
#define int long long int
#define loop(i, a, b) for (int i = a; i < b; i++)
#define loopr(i, a, b) for (int i = a; i >= b; i--)
#define loops(i, a, b, step) for (int i = a; i < b; i += step)
#define looprs(i, a, b, step) for (int i = a; i >= b; i -= step)
#define ll long long
#define F first
#define MP make_pair
#define S second
#define pb push_back
#define ppb pop_back
#define si set<int>
#define usi unordered_set<int>
#define umsi unordered_multiset<int>
#define msi multiset<int>
#define vi vector<int>
#define vvi vector<vector<int>>
#define pii pair<int, int>
#define vpi vector<pii>
#define vpp vector<pair<int, pii>>
#define mii map<int, int>
#define umii unordered_map<int, int>
#define mpi map<pii, int>
#define umpi unordered_map<pii, int>
#define spi set<pii>
#define endl "\n"
#define sz(x) ((int)x.size())
#define all(p) p.begin(), p.end()
#define double long double
#define que_max priority_queue<int>
#define countSetBits(a) __builtin_popcount(a)
#define que_min priority_queue<int, vi, greater<int>>
#define bug(...) __f(#__VA_ARGS__, __VA_ARGS__)
#define print(a) \
for (auto x : a) \
cout << x << " "; \
cout << endl
#define print1(a) \
for (auto x : a) \
cout << x.F << " " << x.S << endl
#define print2(a, x, y) \
for (int i = x; i < y; i++) \
cout << a[i] << " "; \
cout << endl
template <typename T1, typename T2>
istream &operator>>(istream &istream, pair<T1, T2> &p)
{
return (istream >> p.first >> p.second);
}
template <typename T>
istream &operator>>(istream &istream, vector<T> &v)
{
for (auto &it : v)
cin >> it;
return istream;
}
template <typename T1, typename T2>
ostream &operator<<(ostream &ostream, const pair<T1, T2> &p)
{
return (ostream << p.first << " " << p.second);
}
template <typename T>
ostream &operator<<(ostream &ostream, const vector<T> &c)
{
for (auto &it : c)
cout << it << " ";
return ostream;
}
inline int power(int a, int b)
{
int x = 1;
while (b)
{
if (b & 1)
x *= a;
a *= a;
b >>= 1;
}
return x;
}
//for modular multiplicative inverse pass b as mod-2
int expo(int a, int b, int mod)
{
int res = 1;
while (b > 0)
{
if (b & 1)
res = (res * a) % mod;
a = (a * a) % mod;
b = b >> 1;
}
return res;
}
void extendgcd(int a, int b, int *v)
{
if (b == 0)
{
v[0] = 1;
v[1] = 0;
v[2] = a;
return;
}
extendgcd(b, a % b, v);
int x = v[1];
v[1] = v[0] - v[1] * (a / b);
v[0] = x;
return;
}
//for non prime b
int mminv(int a, int b)
{
int arr[3];
extendgcd(a, b, arr);
return arr[0];
}
int mminvprime(int a, int b) { return expo(a, b - 2, b); }
int combination(int n, int r, int m, int *fact, int *ifact)
{
int val1 = fact[n];
int val2 = ifact[n - r];
int val3 = ifact[r];
return (((val1 * val2) % m) * val3) % m;
}
vector<int> sieve(int n)
{
int *arr = new int[n + 1]();
vector<int> vect;
for (int i = 2; i <= n; i++)
if (arr[i] == 0)
{
vect.push_back(i);
for (int j = 2 * i; j <= n; j += i)
arr[j] = 1;
}
return vect;
}
int mod_add(int a, int b, int m)
{
a = a % m;
b = b % m;
return (((a + b) % m) + m) % m;
}
int mod_mul(int a, int b, int m)
{
a = a % m;
b = b % m;
return (((a * b) % m) + m) % m;
}
int mod_sub(int a, int b, int m)
{
a = a % m;
b = b % m;
return (((a - b) % m) + m) % m;
}
//only for prime m
int mod_div(int a, int b, int m)
{
a = a % m;
b = b % m;
return (mod_mul(a, mminvprime(b, m), m) + m) % m;
}
int isSubstring(string s2, string s1)
{
if (s2.find(s1) != string::npos)
return s2.find(s1);
return -1;
}
template <typename Arg1>
void __f(const char *name, Arg1 &&arg1) { cout << name << " : " << arg1 << endl; }
template <typename Arg1, typename... Args>
void __f(const char *names, Arg1 &&arg1, Args &&...args)
{
const char *comma = strchr(names + 1, ',');
cout.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
template <class T>
bool ckmin(T &a, const T &b) { return b < a ? a = b, 1 : 0; }
template <class T>
bool ckmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
class union_find
{
public:
int *pr;
int *sz;
union_find(int n)
{
pr = new int[n + 1];
sz = new int[n + 1];
for (int i = 0; i < n; ++i)
pr[i] = i, sz[i] = 1;
}
int root(int i)
{
if (pr[i] == i)
return i;
return pr[i] = root(pr[pr[i]]);
}
int find(int i, int j)
{
return (root(i) == root(j));
}
int un(int i, int j)
{
int u = root(i);
int v = root(j);
if (u == v)
return 0;
if (sz[u] < sz[v])
swap(u, v);
pr[v] = u;
sz[u] += sz[v];
return 1;
}
};
template <class T, class U>
// T -> node, U->update.
struct Lsegtree
{
vector<T> st;
vector<U> lazy;
ll n;
T identity_element;
U identity_update;
/*
Definition of identity_element: the element I such that combine(x,I) = x
for all x
Definition of identity_update: the element I such that apply(x,I) = x
for all x
*/
Lsegtree(ll n, T identity_element, U identity_update)
{
this->n = n;
this->identity_element = identity_element;
this->identity_update = identity_update;
st.assign(4 * n, identity_element);
lazy.assign(4 * n, identity_update);
}
T combine(T l, T r)
{
//if this combine function is summing up two values then the identitiy element becomes 0
//if this combine function is taking the maximum then the identitiy element becomes -inf
//if this combine function is taking the minimum then the identitiy element becomes inf
// change this function as required.
T ans = (l + r);
//max: T ans = max(l,r)
//min : T ans = min(l,r)
//gcd : T ans = gcd(l,r)
return ans;
}
void buildUtil(ll v, ll tl, ll tr, vector<T> &a)
{
if (tl == tr)
{
st[v] = a[tl];
return;
}
ll tm = (tl + tr) >> 1;
buildUtil(2 * v + 1, tl, tm, a);
buildUtil(2 * v + 2, tm + 1, tr, a);
st[v] = combine(st[2 * v + 1], st[2 * v + 2]);
}
// change the following 2 functions, and you're more or less done.
T apply(T curr, U upd, ll tl, ll tr)
{
//lets say we were assigning a value then the element that we choose as identity update is totally upto us so we can choose it to be as -1, if we have to add an element upto the entire range in that case the identity element would be zero
T ans = (tr - tl + 1) * upd;
// increment range by upd:
// T ans = curr + (tr - tl + 1)*upd
// query, take max, update, assign a value:
// T ans = upd;
return ans;
}
// this function combines two updates
U combineUpdate(U old_upd, U new_upd, ll tl, ll tr)
{
// assigning a value to a range
U ans = old_upd;
ans = new_upd;
// adding a value to a range
// U ans = old_upd + new_upd
return ans;
}
void push_down(ll v, ll tl, ll tr)
{
//for the below line to work, make sure the "==" operator is defined for U.
if (lazy[v] == identity_update)
return;
st[v] = apply(st[v], lazy[v], tl, tr);
if (2 * v + 1 <= 4 * n)
{
ll tm = (tl + tr) >> 1;
lazy[2 * v + 1] = combineUpdate(lazy[2 * v + 1], lazy[v], tl, tm);
lazy[2 * v + 2] = combineUpdate(lazy[2 * v + 2], lazy[v], tm + 1, tr);
}
lazy[v] = identity_update;
}
T queryUtil(ll v, ll tl, ll tr, ll l, ll r)
{
push_down(v, tl, tr);
if (l > r)
return identity_element;
if (tr < l or tl > r)
{
return identity_element;
}
if (l <= tl and r >= tr)
{
return st[v];
}
ll tm = (tl + tr) >> 1;
return combine(queryUtil(2 * v + 1, tl, tm, l, r), queryUtil(2 * v + 2, tm + 1, tr, l, r));
}
void updateUtil(ll v, ll tl, ll tr, ll l, ll r, U upd)
{
push_down(v, tl, tr);
if (tr < l or tl > r)
return;
if (tl >= l and tr <= r)
{
lazy[v] = combineUpdate(lazy[v], upd, tl, tr);
push_down(v, tl, tr);
}
else
{
ll tm = (tl + tr) >> 1;
updateUtil(2 * v + 1, tl, tm, l, r, upd);
updateUtil(2 * v + 2, tm + 1, tr, l, r, upd);
st[v] = combine(st[2 * v + 1], st[2 * v + 2]);
}
}
void build(vector<T> a)
{
assert((ll)a.size() == n);
buildUtil(0, 0, n - 1, a);
}
T query(ll l, ll r)
{
return queryUtil(0, 0, n - 1, l, r);
}
void update(ll l, ll r, U upd)
{
updateUtil(0, 0, n - 1, l, r, upd);
}
};
struct Fenwick
{
vector<ll> t;
void reset(int n)
{
t.assign(n + 1, 0);
}
void update(int p, ll v)
{
p++;
for (; p < (int)t.size(); p += (p & (-p)))
t[p] += v;
}
ll query(int r) //finds [1, r] sum
{
r++;
ll sum = 0;
for (; r; r -= (r & (-r)))
sum += t[r];
return sum;
}
ll query(int l, int r) //finds [l, r] sum
{
if (l == 0)
return query(r);
return query(r) - query(l - 1);
}
};
struct DifferenceArray
{
vector<int> D;
void initializeDiffArray(vector<int> &A)
{
int n = A.size();
// We use one extra space because
// update(l, r, x) updates D[r+1]
D.resize(n + 1);
D[0] = A[0], D[n] = 0;
for (int i = 1; i < n; i++)
D[i] = A[i] - A[i - 1];
}
// Does range update
void update(int l, int r, int x)
{
D[l] += x;
D[r + 1] -= x;
}
// Prints updated Array
void printArray(vector<int> &A)
{
for (int i = 0; i < A.size(); i++)
{
if (i == 0)
A[i] = D[i];
// Note that A[0] or D[0] decides
// values of rest of the elements.
else
A[i] = D[i] + A[i - 1];
cout << A[i] << " ";
}
cout << endl;
}
};
template <typename T>
struct rmq
{
vector<T> v;
int n;
static const int b = 30;
vector<int> mask, t;
int op(int x, int y)
{
return v[x] < v[y] ? x : y;
}
int lsb(int x)
{
return x & -x;
}
int msb_index(int x)
{
return __builtin_clz(1) - __builtin_clz(x);
}
int small(int r, int size = b)
{
int dist_from_r = msb_index(mask[r] & ((1 << size) - 1));
return r - dist_from_r;
}
rmq(const vector<T> &v_) : v(v_), n(v.size()), mask(n), t(n)
{
int curr_mask = 0;
for (int i = 0; i < n; i++)
{
curr_mask = (curr_mask << 1) & ((1 << b) - 1);
while (curr_mask > 0 and op(i, i - msb_index(lsb(curr_mask))) == i)
{
curr_mask ^= lsb(curr_mask);
}
curr_mask |= 1;
mask[i] = curr_mask;
}
for (int i = 0; i < n / b; i++)
t[i] = small(b * i + b - 1);
for (int j = 1; (1 << j) <= n / b; j++)
for (int i = 0; i + (1 << j) <= n / b; i++)
t[n / b * j + i] = op(t[n / b * (j - 1) + i], t[n / b * (j - 1) + i + (1 << (j - 1))]);
}
T query(int l, int r)
{
if (r - l + 1 <= b)
return v[small(r, r - l + 1)];
int ans = op(small(l + b - 1), small(r));
int x = l / b + 1, y = r / b - 1;
if (x <= y)
{
int j = msb_index(y - x + 1);
ans = op(ans, op(t[n / b * j + x], t[n / b * j + y - (1 << j) + 1]));
}
return v[ans];
}
};
// void dijkstra(int s, vector<int> &d)
// {
// d = vector<int>(n, inf);
// d[s] = 0;
// set<pair<int, int>> st;
// st.insert({d[s], s});
// while (!st.empty())
// {
// int v = st.begin()->second;
// st.erase(st.begin());
// for (auto [to, w] : g[v])
// {
// if (d[to] > d[v] + w)
// {
// auto it = st.find({d[to], to});
// if (it != st.end())
// st.erase(it);
// d[to] = d[v] + w;
// st.insert({d[to], to});
// }
// }
// }
// }
// int fact[200001];
// int ifact[200001];
// void factorial()
// {
// fact[0] = 1;
// ifact[0] = 1;
// for (int i = 1; i <= 200000; i++)
// {
// fact[i] = (fact[i - 1] * (i)) % MOD;
// ifact[i] = mminvprime(fact[i], MOD);
// }
// }
void solve()
{
int n;
cin >> n;
vpi v(n);
cin >> v;
vi starts, ends;
for (auto [x, y] : v)
{
starts.pb(x);
ends.pb(y);
}
sort(all(starts));
sort(all(ends));
int ans = inf;
for (auto [x, y] : v)
{
int cur = lower_bound(all(ends), x) - ends.begin();
cur += starts.end() - upper_bound(all(starts), y);
ckmin(ans, cur);
}
cout << ans << "\n";
}
int32_t main()
{
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
clock_t z = clock();
// factorial();
int t = 1;
cin >> t;
while (t--)
solve();
cerr << "Run Time : " << ((double)(clock() - z) / CLOCKS_PER_SEC);
return 0;
}
439A - Devu the Singer and Churu the Joker | 1323A - Even Subset Sum Problem |
1095A - Repeating Cipher | 630F - Selection of Personnel |
630K - Indivisibility | 20B - Equation |
600B - Queries about less or equal elements | 1015A - Points in Segments |
1593B - Make it Divisible by 25 | 680C - Bear and Prime 100 |
1300A - Non-zero | 1475E - Advertising Agency |
1345B - Card Constructions | 1077B - Disturbed People |
653A - Bear and Three Balls | 794A - Bank Robbery |
157A - Game Outcome | 3B - Lorry |
1392A - Omkar and Password | 489A - SwapSort |
932A - Palindromic Supersequence | 433A - Kitahara Haruki's Gift |
672A - Summer Camp | 1277A - Happy Birthday Polycarp |
577A - Multiplication Table | 817C - Really Big Numbers |
1355A - Sequence with Digits | 977B - Two-gram |
993A - Two Squares | 1659D - Reverse Sort Sum |